
TinyTurb0

The Problem

We're given a tiny x86_64 binary (only 301 bytes!), which uses TheXCellerator's libgolf to
mangle the ELF header. The binary is runnable on 64-bit Linux, but breaks many static analysis
tools that trust the ELF header.

BinaryNinja also has trouble, but by using "Make Function at This Address" at byte 0x78 (the
end of the ELF and Program header), we can read the disassembly.

https://tmpout.sh/1/1.html

The shellcode is quite simple. It reads 8 bytes from stdin, does various operations to these
bytes in a 32 iteration loop, then compares the output to a fixed value (0xa7dd46516fefb265). If
equal, it prints "1", otherwise nothing. The obvious goal is to find the correct input to satisfy this
condition.

The hard part is the "various operations" in the loop. The length and complexity of the
operations in the loop are simple enough to understand going forward, but a cursory attempt to
reverse the instructions proved impossible.

The Solution

To solve, we used pySMT, an API in python that can encode an Satisfiable Modulo Theory
(SMT) problem in a single format and use multiple underlying solvers on it such as z3 or
SMT-SAT.

The form of our pySMT solution is to symbolize the initial input, encode the operations done on
that symbol, set it equal to the fixed value, and finally run it through a solver to find the initial
value.

Thankfully pySMT includes a BitVector (`BV`) class where 32 or 64 bit registers can by
symbolized, encoded, and operated on using the equivalent x86_64 instructions. For example,
the x86 instruction to shift bits to the right, `shr`, can be translated into `BVLShr`. Encoding the
registers as an Integer class in pySMT would not be sufficient as operations that cause
overflows or 32-64 bit translations would not work.

https://github.com/pysmt/pysmt

Instead of translating the instructions into pySMT code manually, we wrote a code generator
using the BinaryNinja python API. The [Low Level Instruction Language with its tree-like
instructions paired well with modern python to make nice recursive function to generate the
pySMT code:

Generates code that looks like this:

https://docs.binary.ninja/dev/bnil-llil.html#low-level-il-instructions

We also want to automatically translate between 32 and 64 bit register values, which we can do
with pySMT's useful `BVExtract` and `BVConcat` functions:

After generating the code from LLIL, we prepend the generated code with the correct Symbols
and initial states:

add the 32 iteration loop manually (If and Goto instructions are not supported in code gen), and
append the code to actually solve for the expected value:

We can finally run the (slightly edited) generated code to solve for the correct value. This took
about 4.5 hours on my machine:

Full code for this challenge is found in TinyTurb0.tar.gz

StrangeCube

This reversing challenge was a 2x2x2 rubik's cube. First we mapped the commands to the
related rubik’s moves that we found here: https://jperm.net/3x3/moves , once this was done we
had to determine what the starting state of the rubik’s cube was.

The rubik’s cube faces were organized in memory as seen below, the labels were set according
to the standard rubik’s cube face names (three == front).

Plugging these values into a rubik’s cube solver found online, we can see that it visually looks
like this and get a solution!

~# ./strange_cube URRfRUfu
[*] G00d flag!

QuantumMatrix

Discovery
The binary given for this task is a stripped ELF file. It has to be run on a
x86_64 Linux platform.

The binary is relatively small, and has a small number of functions. Most of the code is in the
`main` function. Below is a list of the program-specific functions. The other functions are added
by the compiler and can be safely ignored.

Small functions
The function at 0x147b calls sqrt on the sum of the squares of its first
argument. This is the [Euclidean norm] of a vector.

[Euclidean norm] https://en.wikipedia.org/wiki/Vector_norm#Euclidean_norm

The functions at 0x11d9, 0x1284 and 0x1334 appear to work on a strange
structure that contains two floats.

The function at 0x1334 does the following operation:

This operation is in fact the [dot product] of two vectors containing complex numbers. This
function can be rewritten as:

[dot product] https://en.wikipedia.org/wiki/Dot_product#Coordinate_definition

The functions at 0x11d9 and 0x1284 are used to check for easy solutions.

main
The main function (at 0x1522) is much more complex.

It contains the following parts:

● Generate a vector random numbers, with a random size;
● Read and parse the user's input;
● Perform mathematical operations on the input

Unit vector
The vector r contains n random numbers in [0, 1024[. Its size n is

randomly selected in [3, 6[.

A hint is given to know how big the vector is:

● If n is 3, the program prints Hi!;
● If n is 4, the program prints Hey!;
● If n is 5, the program prints Hoy!.

The vector is dynamically allocated on the stack with alloca.

The vector is then normalized (divided by its norm) and becomes a [unit vector].

[unit vector] https://en.wikipedia.org/wiki/Unit_vector

Parse user input
The user input is read on a stack buffer by using scanf. Exploiting this buffer overflow is
left as an exercise to the reader.

The input is parsed and stored in a square matrix of dimension n. The elements are
read sequentially in the form a$b to represent the complex number

a + bi.

a and b can only be in [0, 15] (with the hexadecimal symbols 0 to F). A negative number
can be specified with &

Consider the following input, on a single line, with no spaces:

The 3×3 matrix represented by such input is the following matrix:

The matrix is also allocated with alloca. It is possible to smash the r vector to solve this
challenge. This was considered a bug, and this write-up does not explain how to exploit this
vulnerability. This also means the solution should have 3 different matrices, one for each
possible dimension.

Mathematical operations
Ignoring the basic checks on the user's input to make sure the solution is not trivial, the program
then performs a few operations on the input matrix.

First, it multiplies the matrix with the unit vector r to a new vector a. Since the content of this
vector is random, this hints that the solution either exploits the predictability of the
random-number generation algorithm or a relation between the numbers that eventually cancels
the vector.

Then, a operation that could not be identified is done on the matrix. It is first [transposed], and
every number that is not on the diagonal is replaced by its [conjugate] (i.e. has its imaginary part
negated).

This operation is close to the [conjugate transpose], expect for the diagonal.

Consider the following matrix:

It becomes:

This new matrix is then multiplied with the unit vector r again to create b.

[transposed] https://en.wikipedia.org/wiki/Transpose

[conjugate] https://en.wikipedia.org/wiki/Complex_conjugate

[conjugate transpose] https://en.wikipedia.org/wiki/Conjugate_transpose

The vectors a and b are then multiplied to give a complex number s.

The binary accepts inputs when s is 1 + 0i. (i.e. (m × r) × (r × t) = 1)

Finding Solutions

A Sage script was made to reproduce the behaviour of the program. Trying random inputs to get
a feel of the algorithm yielded a very interesting result: 1+2i

Randomly generated numbers
r = vector([

702, 464, 183, # 287, 623
]).normalized()

Input
l = len(r)

m = matrix(l, l, [
[1 + 1 * I, 0 + 0 * I, 0 + 1 * I],
[0 + 1 * I, 1 + 1 * I, 0 + 0 * I],
[0 + 0 * I, 0 + 1 * I, 1 + 1 * I],

])

:-(
t = m.transpose()
for i in range(l):

v = [0] * l
for j in range(l):

if i != j:
v[j] = t[i][j].conjugate()

else:
v[j] = t[i][j]

t[i] = v

Actual maths
a = m * r
b = r * t
s = a * b

print(s)

Since the 3×3 case is small enough, it can be solved by a brute-force script that tries every
values that make sense in mathematics (-1, 0 and 1)

Randomly generated numbers
r = vector([

702, 464, 183, # 287, 623
]).normalized()

Input
l = len(r)

def gen(tries, count, index):
ret = [tries[0]] * count

for i in range(count):
ret[i] = tries[index % len(tries)]
index //= len(tries)

return ret

tries = [0, 1, -1]
for loop in range(len(tries) ** (2 * (l * l))):

if loop == 0:
continue

o = loop
Mi = matrix(l, l, gen(tries, l * l, loop))
loop //= len(tries) ** (l * l)
Mr = matrix(l, l, gen(tries, l * l, loop))
m = Mr + I * Mi

:-(
t = m.transpose()
for i in range(l):

v = [0] * l
for j in range(l):

if i != j:
v[j] = t[i][j].conjugate()

else:
v[j] = t[i][j]

t[i] = v

a = m * r
b = r * t
s = a * b

if s == 1:
print(m)
print(s)

print(o)

This script finds the following solution after a few seconds:

After rewriting a solver in C to get better performances, the following additional solutions were
found:

VirtWorld

It appears that there are many possible solutions to this challenge so a keygen script is included
in the VirtWorld.zip.

This challenge was a classic, and fun, stack based VM challenge. To solve this we extracted the
code from the binary and wrote a “disassembler”. We also attempted to write an emulator which
was also provided but it was easiest to solve the challenge statically. The only dynamic
modification required was to patch out the move of the ptrace result into a “checked” variable so
as to pass the “is_debugged” check and run the program in gdb.

The “pseudo” code for the program looked something like this:

goal = 0
BUF[20];

if(ptrace())
exit(0)

read(1, BUF, 20)

check 4 bytes at a time
idx = 0
for chunk in range(4, -1, -1):

char0 = BUF[idx]
idx += 1
char1 = BUF[idx]

if char1 != 95:
exit(0)

char0 ^= (95 + chunk)
idx += 1
char2 = BUF[idx] - 48 + 14
idx += 1
char3 = BUF[idx]
idx += 1

3rd character affects jmp target
3rd character can either be one of: # 0 1 3 5

if (char2 + 48 - 14) == ord('#')
continue

elif (char2 + 48 - 14) == ord('0')
if char0 != 0

exit(0)
elif (char2 + 48 - 14) == ord('1')

if char0 + char3 != 0:
exit(0)

elif (char2 + 48 - 14) == ord('3')
if char0 - char3 != 0:

exit(0)
elif (char2 + 48 - 14) == ord('5')

if char0 ^ char3 != 0:
exit(0)

The major optimization in the pseudo code above is the use of the if-else block to abstract away
several instructions since the only side effect of the dynamically calculated jmp target was to
perform one of 5 checks. The input was checked 4 bytes at a time and the “check” itself was
selected based on user input and also not very tight; therefore, many possible combinations
were possible for every 4 bytes as long as the check condition held.

For the solution script we assumed we wanted to use check ‘5’ for each 4 byte chunk and
simply selected the first solution discovered via brute force.

~# ./virtual_world
P_53P_52P_51P_50f_59
GG!

